

 Navigation

 	
 index

 	
 next |

 	Minion 0.4 documentation

Mozilla Minion

Minion is a security testing framework built by Mozilla to bridge the gap between developers and security testers. To do so, it enables developers to scan with a wide variety of security tools, using a simple HTML-based interface.

It consists of three umbrella projects:

	Minion Frontend [https://github.com/mozilla/minion-frontend], a Python, angular.js, and Bootstrap-based website that provides a HTML interface to authenticate and authorize users, manage sites, initiate scans, and report issues

	Minion Backend [https://github.com/mozilla/minion-backend], a Python, Flask, and Twisted-based backend that provides an API for the Minion Frontend, and acts as a middleman between the frontend and external security tools

	Minion VM [https://github.com/mozilla/minion-vm], a repository of recipes to allow quick installations of Minion either via Vagrant or Docker

Minion has limited scanning functionality built into itself. Instead, it relies on the large variety of pre-existing open source and commercial scanning tools. These plugins include:

	Minion ZAP [https://github.com/mozilla/minion-zap-plugin], which utilizes the OWASP Zed Attack Proxy [https://github.com/zaproxy/zaproxy]

	Minion Nmap [https://github.com/mozilla/minion-nmap-plugin], utilizing the Nmap network scanner [https://nmap.org/]

	Minion Skipfish [https://github.com/mozilla/minion-skipfish-plugin], utilizing the Skipfish reconnaissance tool [https://code.google.com/p/skipfish/]

	Minion SSLyze [https://github.com/Wawki/minion-sslyze-plugin], utilizing the SSLyze TLS scanner [https://github.com/nabla-c0d3/sslyze]

	Minion SSL [https://github.com/mozilla/minion-ssl-plugin], which uses the sslscan TLS scanner [https://github.com/rbsec/sslscan]

Developers

We are available in the #websectools channel on irc.mozilla.org:

	April King (April)

	Mark Goodwin (mgoodwin)

	Simon Bennetts (psiinon)

	Yvan Boily (yvan)

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Minion 0.4 documentation

Installing Minion

Prerequisites

Minion is developed on Ubuntu 14.04. While it should work on other operating systems, your mileage may vary. The installation guide assumes that you will install Minion in /opt/minion, and a virtualenv of /opt/minion/minion-env, with Minion Frontend and Minion Backend installed on different systems.

Install using Minion VM

For developers or testers, we strongly suggest using Minion VM, which will install Minion automatically using either Vagrant or Docker. Of the two, Vagrant is the preferred method, as it helps facilitate rapid development.

Downloading minion-vm

Make sure you have git installed, and then clone the minion-vm repository:

$ git clone https://github.com/mozilla/minion-vm.git

Then, regardless of whether we’re using Vagrant or Docker, it is necessary to edit backend.sh to change the initial administrator’s email address and name:

MINION_ADMINISTRATOR_EMAIL="youremail@yourorganization.org"
MINION_ADMINISTRATOR_NAME="Your Name"

Installation via Vagrant

First, we’ll grab minion-backend, and minion-frontend from GitHub:

$ git clone https://github.com/mozilla/minion-backend
$ git clone https://github.com/mozilla/minion-frontend

Then, edit the BACKEND_SRC and FRONTEND_SRC variables in Vagrantfile to point to the location where you cloned them on your local system. We’ll also create a directory to store the packages that Vagrant VMs will pull down; this will greatly speed up installation. This directory is the APT_CACHE_SRC variable:

BACKEND_SRC = "/home/myuser/minion/minion-backend/"
FRONTEND_SRC = "/home/myuser/minion/minion-frontend/"
APT_CACHE_SRC = "/home/myuser/minion/apt-cache/com.hashicorp.vagrant/apt-cache/"

If you don’t want Minion to use the private network IP addresses 192.168.50.49 and 192.168.50.50 for the backend and frontend respectively, edit them inside both Vagrantfile and vagrant-hosts.sh:

BACKEND_IP = "192.168.50.49"
FRONTEND_IP = "192.168.50.50"

192.168.50.49 minion-backend
192.168.50.50 minion-frontend

Now all we need to do is start it up:

$ vagrant up

That’s it! The Minion frontend should now be accessible at http://192.168.50.50:8080, or whatever you set the IP address to.

You can also ssh into your new Minion instances with vagrant ssh minion-frontend and vagrant ssh minion-backend.

Installation via Docker

The Docker installation will automatically pull down minion-backend and minion-frontend from GitHub.

$ docker build -t 'mozilla/minion-backend' -f Dockerfile-backend .
$ docker build -t 'mozilla/minion-frontend' -f Dockerfile-frontend .
$ docker run -d --name 'minion-backend' 'mozilla/minion-backend'
$ docker run -d -p 8080:8080 --name 'minion-frontend' \
 --link minion-backend:minion-backend 'mozilla/minion-frontend'

The Minion frontend should now be accessible over HTTP at the IP address of the system running Docker, on port 8080.

You can also get a shell on your new Minion instances with docker exec -i -t minion-frontend /bin/bash and
docker exec -i -t minion-backend /bin/bash.

Manual Installation

Install Minion Backend

We will be installing the Minion Backend into /opt/minion/minion-backend with a virtualenv location of /opt/minion/minion-env.

First install the essentials:

apt-get update
apt-get install -y build-essential curl git libcurl4-openssl-dev libffi-dev \
 libssl-dev mongodb-server postfix python python-dev python-virtualenv \
 rabbitmq-server stunnel supervisor

Then, create and source your virtual environment. This will help keep Minion isolated from the rest of your system. We
also need to upgrade setuptools from the version included with Ubuntu by default:

mkdir -p /etc/minion /opt/minion
cd /opt/minion
virtualenv minion-env
source minion-env/bin/activate

(minion-env)# easy_install --upgrade setuptools # required for Mock

Next, setup your system with the following directories and the minion user account. We’ll also create some convenience shell commands, to make working with Minion easier when running as the minion user:

useradd -m minion
install -m 700 -o minion -g minion -d /run/minion -d /var/lib/minion -d /var/log/minion -d ~minion/.python-eggs

echo -e "\n# Automatically source minion-backend virtualenv" >> ~minion/.profile
echo -e "source /opt/minion/minion-env/bin/activate" >> ~minion/.profile

echo -e "\n# Minion convenience commands" >> ~minion/.bashrc
echo -e "alias miniond=\"supervisord -c /opt/minion/minion-backend/etc/supervisord.conf\"" >> ~minion/.bashrc
echo -e "alias minionctl=\"supervisorctl -c /opt/minion/minion-backend/etc/supervisord.conf\"" >> ~minion/.bashrc

Now we can checkout Minion and install it:

cd /opt/minion
git clone https://github.com/mozilla/minion-backend.git
source minion-env/bin/activate
(minion-env)# cd minion-backend
(minion-env)# python setup.py develop

To make sure that Minion starts when the system reboots, we need to install the Minion init script. We can also disable
the global supervisord installed with apt-get install above, if it wasn’t being used before:

cp /opt/minion/minion-backend/scripts/minion-init /etc/init.d/minion
chown root:root /etc/init.d/minion
chmod 755 /etc/init.d/minion
update-rc.d minion defaults 40
update-rc.d -f supervisor remove

Next, we enable debug logging and automatic reloading of Minion or plugins upon code changes, by adding the --debug and --reload options:

sed -i 's/runserver/--debug --reload runserver/' /opt/minion/minion-backend/etc/minion-backend.supervisor.conf

Note

Auto-debugging and auto-reloading shouldn’t be enabled on production systems, for security purposes.

And that’s it! Provided that everything installed successfully, we can start everything up:

service mongodb start
service rabbitmq-server start
service minion start

From this point on, you should be able to control the Minion processes either as root or as the newly-created minion user. Let’s become the minion user, and see if everything is running properly:

su - minion
(minion-env)$ service minion status
minion-backend RUNNING pid 18010, uptime 0:00:04
minion-plugin-worker RUNNING pid 18004, uptime 0:00:04
minion-scan-worker RUNNING pid 18009, uptime 0:00:04
minion-scanschedule-worker RUNNING pid 18008, uptime 0:00:04
minion-scanscheduler RUNNING pid 18007, uptime 0:00:04
minion-state-worker RUNNING pid 18005, uptime 0:00:04

Success! You can also use minionctl (an alias to supervisorctl, using the Minion supervisord.conf configuration) to stop and start individual services, or check on status:

(minion-env)$ minionctl stop minion-backend
minion-backend: stopped

(minion-env)$ minionctl status minion-backend
minion-backend STOPPED Sep 03 09:18 PM

(minion-env)$ minionctl start minion-backend
minion-backend: started

(minion-env)$ minionctl status minion-backend
minion-backend RUNNING pid 18795, uptime 0:00:07

All that’s left to do now is initialize the Minion database and create an administrator:

(minion-env)$ minion-db-init 'Your Name' 'youremail@mozilla.com' y
success: added 'Your Name' (youremail@yourcompany.com) as administrator

And we’re done! All logs for Minion, including stdout, stderr, and debug logs, should appear in /var/log/minion.

Note

If you use virtualenv (recommended), then the Minion convenience scripts (such as minion-db-init) are only available if the shell is sourced into the virtualenv. This is done automatically for the Minion user. In other words, if you open a new terminal and then try minion- with auto-completion, the chance is you won’t see anything. If you install Minion without virtualenv, these scripts will be available to the $PATH.

Install Minion Frontend

First, install the essentials:

apt-get update
apt-get install -y build-essential git libldap2-dev libsasl2-dev \
 libssl-dev python python-dev python-virtualenv supervisor

Then, create and source your virtual environment. This will help keep Minion isolated from the rest of your system. We
also need to upgrade setuptools from the version included with Ubuntu by default:

mkdir -p /etc/minion /opt/minion
cd /opt/minion
virtualenv minion-env
source minion-env/bin/activate

(minion-env)# easy_install –upgrade setuptools # required for Mock

Next, setup your system with the following directories and the minion user account. We’ll also create some convenience shell commands, to make working with Minion easier when running as the minion user:

useradd -m minion
install -m 700 -o minion -g minion -d /run/minion -d /var/lib/minion -d /var/log/minion -d ~minion/.python-eggs

echo -e "\n# Automatically source minion-frontend virtualenv" >> ~minion/.profile
echo -e "source /opt/minion/minion-env/bin/activate" >> ~minion/.profile

echo -e "\n# Minion convenience commands" >> ~minion/.bashrc
echo -e "alias miniond=\"supervisord -c /opt/minion/minion-frontend/etc/supervisord.conf\"" >> ~minion/.bashrc
echo -e "alias minionctl=\"supervisorctl -c /opt/minion/minion-frontend/etc/supervisord.conf\"" >> ~minion/.bashrc

Now we can checkout Minion and install it:

cd /opt/minion
git clone https://github.com/mozilla/minion-frontend.git
source minion-env/bin/activate
(minion-env)# python setup.py develop

To make sure that Minion starts when the system reboots, we need to install the Minion init script. We can also disable
the global supervisord installed with apt-get install above, if it wasn’t being used before:

cp /opt/minion/minion-frontend/scripts/minion-init /etc/init.d/minion
chown root:root /etc/init.d/minion
chmod 755 /etc/init.d/minion
update-rc.d minion defaults 40
update-rc.d -f supervisor remove

And that’s it! Provided that everything installed successfully, we can start everything up:

service minion start

From this point on, you should be able to control the Minion processes either as root or as the newly-created minion user. Let’s su - minion, and see if everything is running properly:

su - minion
(minion-env)minion@minion-frontend:~$ service minion status
minion-frontend RUNNING pid 1506, uptime 1 day, 1:25:41

Success! You can also use minionctl (an alias to supervisorctl, using the Minion supervisord.conf configuration)
to stop and start individual services, or check on status:

(minion-env)minion@minion-frontend:~$ minionctl stop minion-frontend
minion-frontend: stopped
(minion-env)minion@minion-frontend:~$ minionctl status minion-frontend
minion-frontend STOPPED Sep 09 07:15 PM
(minion-env)minion@minion-frontend:~$ minionctl start minion-frontend
minion-frontend: started
(minion-env)minion@minion-frontend:~$ minionctl status minion-frontend
minion-frontend RUNNING pid 8713, uptime 0:00:05

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Minion 0.4 documentation

Configuring Minion

This document explains how to configure the Minion frontend and backend.

As a convention, Minion will look in /etc/minion/ and ~minion/.minion for its configuration files.

Configure Minion Frontend

Here is the default configuration [https://github.com/mozilla/minion-vm/blob/master/frontend.json] for the Minion frontend server:

{
 "backend-api": {
 "url": "http://minion-backend:8383"
 },

 "login": {
 "type": "persona",

 "ldap": {
 "uri": "ldaps://ldap.server/",
 "baseDN": "ou=test,dc=test_dc",

 "emailAttribute": "mail",
 "groupMembershipAttribute": "member",
 "usernameAttribute": "uid",

 "checkAuthorizedGroups": false,
 "authorizedGroups": [
 "ou=groupTest1,ou=test,dc=test_dc",
 "ou=groupTest2,ou=test,dc=test_dc"
]
 },

 "oauth": {
 "providers": {
 "facebook": {
 "client_id": "",
 "client_secret": ""
 },
 "firefoxaccounts": {
 "client_id": "",
 "client_secret": ""
 },
 "github": {
 "client_id": "",
 "client_secret": ""
 },
 "google": {
 "client_id": "",
 "client_secret": ""
 }
 }
 }
 }
}

To configure the frontend, place your configuration in a file called frontend.json in either /etc/minion or /home/user/.minion.

	backend-api
	uri: URI of the Minion backend server

	login
	type: the type of authentication to use; currently supported types are persona, which requires no configuration, ldap, and oauth

	ldap: the configuration for LDAP, if ldap is the chosen authentication method in login -> type
	uri: URI to ldap server

	baseDN: baseDN for users; not needed for Active Directory

	emailAttribute: typically mail in OpenLDAP or userPrincipalName in Active Directory

	groupMembershipAttribute: typically member in OpenLDAP or uniqueMember in Active Directory

	usernameAttribute: typically uid in OpenLDAP or samAccountName in AD

	checkAuthorizedGroups: if true, require group membership in addition to valid user id

	authorizedGroups: list of groups where users are authorized to use Minion (if checkAuthorizedGroups is true)

	oauth: the configuration for OAuth, if oauth` is the chosen authentication method is set in ``login -> type; see Configuring OAuth
	***: supported providers are Facebook, Firefox Accounts, GitHub, and Google
	client_id: client_id for the chosen provider

	client_secret: client_secret for the chosen provider

Configure Minion Backend

Here is the default configuration [https://github.com/mozilla/minion-backend/blob/master/etc/backend.json] for the Minion backend server:

{
 'api': {
 'url': 'http://127.0.0.1:8383',
 },
 'celery': {
 'broker': 'amqp://guest@127.0.0.1:5672//',
 'backend': 'amqp'
 },
 'mongodb': {
 'host': '127.0.0.1',
 'port': 27017
 },
 'email': {
 'host': '127.0.0.1',
 'port': 25,
 'max_time_allowed': 604800 # 7 * 24 * 60 * 60 (7 days)
 }
}

To configure the backend, place your configuration in a file called backend.json at either /etc/minion or
/home/user/.minion.

	api
	url: the full authority (hostname and port) of the backend server.

	celery
	broker: URI of the celery broker

	backend: protocol used to speak to backend

	mongodb:
	host: hostname of MongoDB server

	port: port of the MongoDB server

	email
	host: hostname of mail server

	port: port of mail server

	max_time_allowed: determines the life time of an invitation; by default it will remain valid for seven days.

Configuring OAuth

Minion currently supports Facebook, Firefox Accounts (FxA), GitHub, and Google Accounts as OAuth providers.

[image: _images/login-oauth.png]
To enable a provider, simply input the client_id and client_secret provided by them into frontend.json. Once input, they should automatically appear as options on the login page. For example:

"facebook": {
 "client_id": "1234567890101112",
 "client_secret": "1c414b10981bfe1aa134874ac4daf780"
 }

When configuring the provider, each will have a unique callback URI corresponding to its provider name. The URI should look like:

<http or https>://<hostname>/ws/login/oauth/<provider>

For example:

https://minion.mozilla.org/ws/login/oauth/facebook

Whitelisting and Blacklisting Hosts

By default, Minion will blacklist [https://github.com/mozilla/minion-backend/blob/master/etc/scan.json] the following IP addresses from being scanned:

"blacklist": [
 "10.0.0.0/8",
 "127.0.0.0/8",
 "172.16.0.0/12",
 "192.168.0.0/16",
 "169.254.0.0/16"
]

You can check the latest list at: .

The effect of this is that Minion will refuse to scan any target site whose hostname falls in one of the ranges.
For example, when Minion resolve the hostname localhost to 127.0.0.1, Minion will abort the scan because
it is blacklisted.

To configure the blacklist and whitelist, you can copy etc/scan.json into either /etc/minion/ or ~minion/.minion/. Note that the whitelist will override the blacklist, so in this example, IP addresses in 192.168.1.0/24 can be scanned, despite 192.168.0.0/16 being in the blacklist:

{
 "whitelist": [
 "192.168.1.0/24"
],
 "blacklist": [
 "10.0.0.0/8",
 "127.0.0.0/8",
 "172.16.0.0/12",
 "192.168.0.0/16",
 "169.254.0.0/16"
]
}

Any host that does not fall within the blacklist can be scanned.

IP address blacklisting and whitelist also supports hostnames and hostname wildcards. For example:

"blacklist": [
 "mozilla.com",
 "*.mozilla.org"
]

In this configuration, we allowed scanning LAN network and localhost, but we removed the ability to scan mozilla.com and any subdomain of mozilla.org. Note that if we wanted to block mozilla.org and subdomains, we would need entries for mozilla.org and *.mozilla.org:

"blacklist": [
 "mozilla.org",
 "*.mozilla.org"
]

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Minion 0.4 documentation

Installing Plugins

Plugins are essential to Minion scan. Every attack plan will specify one or more Minion plugin. A plugin is essentially a Python wrapper around a scan tool. The tool can be as complex as OWASP ZAP [https://github.com/zaproxy/zaproxy] or as simple as checking HTTP header using Python (such as basic.plan that is shipped with Minion).

To view a list of plugins available to Minion backend, logged in the frontend with an admin account, click on
Administration, and then click on Plugins.

[image: _images/admin-plugins.png]
The Minion instance this screenshot is taken from has custom plugin Nmap [https://github.com/mozilla/minion-nmap-plugin/]. Plugins that are under
the namespace minion.plugins.basic.* come from the basic plugin that is shipped with Minion backend.

In this document, users can learn how to install the Nmap plugin. Each plugin should have roughly similar instructions for installation.

First, we need to install whatever external tool the plugin requires, in this case, nmap:

apt-get update && apt-get -y install nmap

Then, source the Minion virtualenv, download the plugin, and install it:

source /opt/minion/minion-env/bin/activate
(minion-env)# cd /opt/minion
(minion-env)# git clone https://github.com/mozilla/minion-nmap-plugin.git
(minion-env)# cd minion-nmap-plugin
(minion-env)# python setup.py install

Finally, restart Minion to pick up the new plugin:

/etc/init.d/minion stop
/etc/init.d/minion start

This should add the Minion plugin to the plugin administration page. Simply configure its plan, assign it to a site, and you’re ready to begin scanning!

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Minion 0.4 documentation

Using Minion

Minion’s frontend is separate from the backend repository. Here we show how the frontend looks.

Login

Minion’s frontend is authenticated using Persona. You can replace Persona if you want. The backend is authentication
agonistic; it is the job of the frontend web service to verify that given user has permission to access a resource.
We explain this in Inside Minion.

[image: _images/login.png]
If you are new to Persona, please check Sign up for a Persona account to find out how to make your email address into a Persona-capable
email address.

Dashboard

The screenshot belows is the first thing a Minion user will see after logging in. The current logged in user
can only see the sites that he or she has access to; the user must be in a group that the site is also in. We
will explain this later in the admin section.

[image: _images/dashboard.png]
The dashboard shows the progress of the newest scan (if any), the number of issues discovered by the newest scan, a link
to view the detail of the newest scan and a button to trigger a scan.

The Scan History tab shows all the scans performed on the site. The All Issues tab lists issues of the newest scan for
each site the user has access to.

If the user is in multiple groups, the dashboard also provide a drop-down menu on the upper mid-right corner to switch
the group view, as shown in the screenshot below. In this case this current logged in user belongs to two groups.

[image: _images/dashboard-groups.png]

Scan Detail

The scan detail page lists all the issues with a short title. If the scan failed it will list the reason.

[image: _images/scan-detail.png]

Issue Detail

Every issue has a detail page that describes the problem, possible mitigation and a list of references to look up.

[image: _images/scan-issue.png]

Admin: Users

This panel lists all the users in Minion. As with all other panels in the rest of the administration dashboard,
there is a filter and an in-page search box to find users.

[image: _images/admin-users.png]

Admin: Sites

This panel lists all the sites that have been added to this Minion instance. Currently only admin users can
add sites and site url format is also restricted. As of 0.4 release, Minion can only accept url that looks like
http[s]://<subdomain>*.<domain>. For example, while 192.168.1.100, foobar.com and foo.bar.com
are valid, the frontend will not accept paths so that foobar.com/project/ is not acceptable.

There is a longstanding ticket [https://github.com/mozilla/minion-frontend/issues/100] to loosen up this restriction in the future release of Minion.

Note

Also, since 0.4 release there is a hostname blacklist and whitelist mechanism added to Minion. Hostnames like 127.0.0.1 are blocked by Minion by default. To whitelist and/or blacklist what hostnames can be scanned, please refer to Whitelisting and Blacklisting Hosts.

[image: _images/admin-sites.png]
Every site can have one or more attack plan. An attack plan is a JSON configuration which specifies the type of
plugin the attack will use. Every site belongs to zero or more groups and only the users in those groups can
scan the site. As of 0.4 release, you must add the site first and then add the site and user to a group in the Group
tab.

Admin: Groups

As aforementioned in the previous section, once a site has been added, it should be added to a group by going to
the Groups panel. Every group contains a set of users and a set of sites; only these users can access these sites.
Bob’s personal blog can belong to two groups named Group A and Group B. As long as Alice is in one of these two groups,
she can too scan Bob’s personal blog on Minion.

[image: _images/admin-groups.png]
By pressing the Edit button, the user is redirected to an editor page.

[image: _images/admin-groups-editor.png]

Admin: Plugins

A Minion plugin is basically a Python class that invoke a security scan tool. This scan tool can be as simple as
a few lines of Python code directly in the class or invoking an external exectuable binary (which can be a simple bash
script or as complex as OWASP ZAP).

[image: _images/admin-plugins.png]
Minion’s backend actually ships with some simple Python plugins called basic plugin. In the screenshot above,
they are under the namespace minion.plugins.basic. These plugins check HTTP header and robots.txt. Other plugins are
not distributed with the backend. You must install them indivdually (although the backend repository has the sample
configuration file for zap, skipfish and nmap).

To learn more about how to install plugins, please check Installing Plugins. For plugin development,
please refer to Developing Plugins.

Admin: Plans

Plans are basically JSON blob/document that specifies what plugins to use (and their configurations). You can
have a plan that utilizes the basic plugin and ZAP plugin.

[image: _images/admin-plans.png]

Admin: Invites

If you want to invite another person to use your Minion, you can send them an invitation. You can add, resend, or cancel
invitation. You can also check whether the invitation is accepted, declined or expired.

When a user is invited, the account is created, but the account is suspended until the user
has accepted the invitation and is authenticated by logging in using a Persona address. If your friend
has two email addresses and you invite your friend by using the non-Persona email address,
your friend can accept the invitation and log in using his or her Persona email address. Minion will take
care of the transition (replacing non-Persona email address in the database which his or her Persona account).

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Minion 0.4 documentation

Inside Minion

In this document, we will look at the internals of Minion. Many of the points
below have been discussed previously at:

	Introducing Minion [https://blog.mozilla.org/security/2013/07/30/introducing-minion/]

	Writing Minion Plugins [https://blog.mozilla.org/security/2013/08/22/1392/]

While the blog posts may be outdated, they are useful to look at.

Minion’s mission

Minion is developed as an open source project by the Mozilla Security Assurance team.
The goal is to enable developers and security testers to bring web application security
into a continuous testing cycle. To do this, both developers and testers are given an
easy to use dashboard that lists all the sites they need to scan, detail scan summary page
and detail issue page to explain vulnerability. Instead of learning a new scan tool,
users can write Minion plugins to call their favorite scan tools, and Minion will spawn
the tool as a new process, scan the target website, and return the results back to the user.

Architecture

At a high level there are three major components in Minion: Plugins,
Task Engine, and Front End.

In principle, the backend of Minion consists of a task engine and a set of plugins.
The Front End exposes a user interface for both regular users and administrators
to manage configurations and to see scan results.

Technology stack

Before we divde into what each component does, let us look at the technology stack
we are using in Minion:

	We build the backend and frontend heavily in Python, using the
Flask [http://flask.pocoo.org] web framework for building
an APIs server.

	The backend’s task engine uses Twisted [http://twistedmatrix.com/trac/]
for plugin execution.

	We use RabbitMQ [http://www.rabbitmq.com/]
to queue and transfer messages between executing plugin and the backend’s task engine.

	The Front-end has a layer of wrapper APIs serving with Flask web framework.

	We create the front end interface using angular.js [http://angularjs.org/]
and Twitter Bootstrap [http://twitter.github.io/bootstrap/] by making
http requests to our front end’s APIs (which in turns make requests to the backend’s
API server).

	We use MongoDB as our data store.

	By default, our version of Minion is using Persona for authentication.

This stack corresponds to the diagram shown below.

[image: https://wiki.mozilla.org/images/8/86/Minion-03-diagram-draft.png]
 [https://wiki.mozilla.org/images/8/86/Minion-03-diagram-draft.png]

Plugins

Minion plugins are light-weight wrappers that perform tasks such as configuring,
starting, stopping a plan, and accept a set of callbacks to notify the caller
that information is available. Minion ships with several primitive plugins
known as basic plugin. This group of plugins checks to see whether
the target URL is accessible, examines various HTTP headers and verifies
whether robots.txt exists and correct.

Two base classes for plugins are provided in the Minion backend to get developers started:

	BlockingPlugin provides the basic functionality to support
a plugin that performs a task, and reports it’s completion state at
the end. This is suitable for creating straightforward plugins directly
within Python.

	ExternalProcessPlugin provides the functionality required
to kick-off an external tool, and the class provides the basis for
several other extensions, especially those that wrap existing security tools.

Besides the primitive basic plugins, Mozilla developers have created several
plugins:

	Minion ZAP [https://github.com/mozilla/minion-zap-plugin], which utilizes the OWASP Zed Attack Proxy [https://github.com/zaproxy/zaproxy]

	Minion Nmap [https://github.com/mozilla/minion-nmap-plugin], utilizing the Nmap network scanner [https://nmap.org/]

	Minion Skipfish [https://github.com/mozilla/minion-skipfish-plugin], utilizing the Skipfish reconnaissance tool [https://code.google.com/p/skipfish/]

	Minion SSLyze [https://github.com/Wawki/minion-sslyze-plugin], utilizing the SSLyze TLS scanner [https://github.com/nabla-c0d3/sslyze]

	Minion SSL [https://github.com/mozilla/minion-ssl-plugin], which uses the sslscan TLS scanner [https://github.com/rbsec/sslscan]

Task Engine

Minion Backend and Minion Task Engine are synonym in this docuemtnation.
The Task Engine provides the core functionality for managing users,
groups, sites, scans, and results within the Minion platform.
Acting as a central hub, the Task Engine maintains a register of
available plugins, provides facilities for creating and modifying plans,
and managing user access to Minion, including which sites they can scan.

To execute a scan on a target URL, one or more plan must be defined for the target
URL and a scan is initiated by picking a specific plan. In the nutshell, a
plan is a JSON document that specifies some information about what the
plan does, and a sequence of plugins to invoke (and such sequence is
called a workflow). An example is shown below:

{
 "name": "Fuzz and Scan",
 "description": "Run Skipfish to fuzz the application, and perform a ZAP scan.",
 "workflow": [
 {
 "plugin_name": "minion.plugins.skipfish.skipfish.SkipfishPlugin",
 "description": "",
 "configuration": {}
 },
 {
 "plugin_name": "minion.plugins.zap.zap_plugin.ZAPPlugin",
 "description": "Run the ZAP Spider and Scanner",
 "configuration": {
 "scan": true
 }
 }
]

This plan will invoke Skipfish and ZAP. The configuration for Skipfish
plugin is left empty to use the default options. Some plugins have required
and optional configuration parameters for users to specify.

Front End

As we stated in the technology stack section, the front end server is a Flask
web application, while the user interface is created using AngularJS. In simple
terms, users do not make direct API calls to the backend. In the nutshell,
the task engine has very very little access control built-in. The front end
is responsible for creating the ACL by wrapping API requests to the task
engine in the front end’s API. AngularJS makes calls to the front end’s
API endpoints.

This looks confusing and unncessary for newcomer, but the main advantage
is that we can re-engineer the front end in anyway we want with little
to zero impact to the task engine. For example, someone swap out the entire
front end and our Persona authentiation with their own front end implementation
and authentication model (e.g. LDAP authentication).

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Minion 0.4 documentation

Developing Plugins

Minion plugins are Python classes that talks to a security aessement tool. This tool can be pure Python code inside the class doing HTTP header check (which is what the basic plugins do), or invoke an external executable binary. It can be as simple as a few lines of Perl or as complex as OWASP ZAP [https://github.com/zaproxy/zaproxy].

How Minion discovers new plugins

If we look at minion-zap-plugin’s source code structure closely, we notice the layout of the package looks minimally like this:

$ tree minion-zap-plugin

minion-zap-plugin
├── minion
│ ├── __init__.py
│ └── plugins
│ ├── __init__.py
│ └── zap
│ ├── __init__.py
│ ├── reference.py
│ └── zap_plugin.py
└── setup.py

Every plugin must fall under the minion.plugins package namespace.
This is how the backend detects an existence of a plugin. The third level
in minion-zap-plugin is a directory called zap. This is the namespace
of the plugin itself. In addition, the plugin class must be a subclass of
AbstractPlugin and the following class member attributes:

	PLUGIN_NAME: the name of the plugin displayed to the frontend user

	PLUGIN_VERSION: the release version of the plugin

	PLUGIN_WEIGHT: level of resource required to launch this plugin (light, medium, heavy)

The registry code is found in base.py [https://github.com/mozilla/minion-backend/blob/master/minion/backend/views/base.py].

Whenever a plugin is installed, the backend server and all the celery workers must be restarted, unless the backend is run with the –reload option.

Minion Plugin Classes

Now that you know how Minion discovers a new plugin, we can examine plugin classes.

The first thing a plugin author needs to understand is the basics of
Twisted. Minion’s Task Engine uses Twisted [http://twistedmatrix.com/trac/]
for running plugins. We recommend plugin authors go over
An Introduction to Asynchronous Programming and Twisted [http://krondo.com/blog/?page_id=1327] before jumping into writing plugin. We will only cover relevant information
to get you understand how a Minion plugin works.

AbstractPlugin class

The AbstractPlugin class implements a set of methods and attributes that
a plugin should define. It also provides additional methods
that need not be override by plugin authors. The AbstractPlugin should be
the base class for any plugin you want to write. Minion ships with two
classes of plugins (BlockingPlugin and
ExternalProcessPlugin) inherit from AbstractPlugin and other plugins
Minion developers have developed so far are inheriting from one of the two
classes. We will get into them in the later section; let’s focus on
AbstractPlugin.

Remember how Minion discovers and registers new plugin? The registry
code expects the plugin to be found in the minion.plugins namespace,
and in addition the plugins must have three class methods defined:
name, version, and weight.

The AbstractPlugin implements these class methods with a default value.
For example, if you don’t define name, it will use the plugin’s class name
as the name of the plugin. But it is always a good idea to define them
yourself.

To actual do work, a plugin should implement do_configure, do_start
and do_stop methods since the AbstractPlugin leaves them blank.

BlockingPlugin class

This class inherits from AbstractPlugin directly and is defined in
base.py [https://github.com/mozilla/minion-backend/blob/master/minion/plugins/base.py]
like AbstractPlugin.

The BlockingPlugin implements do_configure, do_start, and do_stop
methods. Most of the Twsited logics are defined in the do_start method. The
class simply expects a method called do_run and passes this method to the
deferToThread which will return an asynchronous result that will return
an actual result some time in the future. The nice deferToThread API
has a pair of callbacks: success and failure. We simply add these two
callbacks to the defer result object and returns.

The magic of Twsited is the event-driven model, also known as reactor model.
The idea is that an event loop will react to an event, possibly executes the
event, and then emits a callback when the event is finished.

You are probably wondering what happen to do_configure. This particular
class of plugin does not expect any pre-processing configuration needed. As
we study the source code, we will see that all basic plugins are instances of
BlockingPlugin. After all, they just need to connect to the target URL,
examine a header or validate the robots.txt.

ExternalProcessPlugin class

This is another implementation of AbstractPlugin class and this class
is useful for executing a plugin that relies on external process such as
ZAP or Skipfish. Instead of calling subprocess, we use Twsited’s
reactor.spawnProcess to launch the external process.

Keen readers notice do_configure is also not defined. This is intentional.
Every plugin that inherits from the ExternalProcessPlugin will implement
its own do_configure because different process is launched differently.

Import plugin class in __init__.py

When we revisit the structure of a plugin package, it looks like this:

minion-zap-plugin
├── minion
│ ├── __init__.py
│ └── plugins
│ ├── __init__.py
│ └── zap
│ ├── __init__.py
│ ├── reference.py
│ └── zap_plugin.py
└── setup.py

The third __init__.py should import the main plugin class. In the case of the zap plugin, it looks like this:

from zap_plugin import ZAPPlugin

If the file is left blank, Minion’s plugin discovery code will not be able to import ZAPPlugin.

Plugin Template Generator

Because developing a plugin with the right structure can be tedious and error-prone, there is a script
to generate Minion plugin. The script lives here: https://gist.github.com/yeukhon/8309083

To use this script, download generate-plugin.py and config.ini. Then edit config.ini to fit your
need (see sample-config.ini on the same page as an example).

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Minion 0.4 documentation

Contribute

Minion is built using open source projects such as Python, angular.js, Flask, Celery, and Twisted. In order to make Minion feature richer and secure, we invite the community to contribute in any way they can. If you have ideas to submit, or have issues to report, you encourage to contact us via:

	IRC: #websectools channel on irc.mozilla.org

	Email list: http://groups.google.com/group/mozilla-minion-dev

	Any of our GitHub repos:

	Minion Frontend [https://github.com/mozilla/minion-frontend], a Python, angular.js, and Bootstrap-based website that provides a HTML interface to authenticate and authorize users, manage sites, initiate scans, and report issues

	Minion Backend [https://github.com/mozilla/minion-backend], a Python, Flask, and Twisted-based backend that provides an API for the Minion Frontend, and acts as a middleman between the frontend and external security tools

	Minion VM [https://github.com/mozilla/minion-vm], a repository of recipes to allow quick installations of Minion either via Vagrant or Docker

	Minion ZAP [https://github.com/mozilla/minion-zap-plugin], which utilizes the OWASP Zed Attack Proxy [https://github.com/zaproxy/zaproxy]

	Minion Nmap [https://github.com/mozilla/minion-nmap-plugin], utilizing the Nmap network scanner [https://nmap.org/]

	Minion Skipfish [https://github.com/mozilla/minion-skipfish-plugin], utilizing the Skipfish reconnaissance tool [https://code.google.com/p/skipfish/]

	Minion SSLyze [https://github.com/Wawki/minion-sslyze-plugin], utilizing the SSLyze TLS scanner [https://github.com/nabla-c0d3/sslyze]

	Minion SSL [https://github.com/mozilla/minion-ssl-plugin], which uses the sslscan TLS scanner [https://github.com/rbsec/sslscan]

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Minion 0.4 documentation

Index

 Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

 include/plugin_repos.html

 Navigation

 		
 index

 		Minion 0.4 documentation »

		Minion ZAP [https://github.com/mozilla/minion-zap-plugin], which utilizes the OWASP Zed Attack Proxy [https://github.com/zaproxy/zaproxy]

		Minion Nmap [https://github.com/mozilla/minion-nmap-plugin], utilizing the Nmap network scanner [https://nmap.org/]

		Minion Skipfish [https://github.com/mozilla/minion-skipfish-plugin], utilizing the Skipfish reconnaissance tool [https://code.google.com/p/skipfish/]

		Minion SSLyze [https://github.com/Wawki/minion-sslyze-plugin], utilizing the SSLyze TLS scanner [https://github.com/nabla-c0d3/sslyze]

		Minion SSL [https://github.com/mozilla/minion-ssl-plugin], which uses the sslscan TLS scanner [https://github.com/rbsec/sslscan]

 © Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

_static/plus.png

_images/scan-issue.png
Issue Details

Summary No Content:Secuty-Polcy header set
Severtty Hgh

Torget hipuostio net

Plan basic

Plugin cspoo
Description

Site has no Gontent-Security Policy header set. CSP defines the Content-Security-Policy HTTP header that allows you to creat
browser to only execute or render resources from those sources.

URLs
The issue was found on the folowing URLs:

AL hetp://kestFire.net

Further Info

« WAG - Gontent-Security Policy 1.0
« Mozilla Developer Network - CSP (Content-Security Policy)

_static/comment.png

_static/up.png

include/minion_repos.html

 Navigation

 		
 index

 		Minion 0.4 documentation »

		Minion Frontend [https://github.com/mozilla/minion-frontend], a Python, angular.js, and Bootstrap-based website that provides a HTML interface to authenticate and authorize users, manage sites, initiate scans, and report issues

		Minion Backend [https://github.com/mozilla/minion-backend], a Python, Flask, and Twisted-based backend that provides an API for the Minion Frontend, and acts as a middleman between the frontend and external security tools

		Minion VM [https://github.com/mozilla/minion-vm], a repository of recipes to allow quick installations of Minion either via Vagrant or Docker

 © Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

_static/file.png

_images/scan-detail.png
Minion Adminstration

Scan Results

Summary

o basc

LR —

St 20120313058 0 o
podatingiay

suw FvsED

Sutes youronamontacom

o

Found Issues

LR

Pugn
Avo 00

AerameOpions 10)
HeTS 00
HoontntpeOptons (00
sossertacion (00
P——

Logged inas yeukhon@mozita.com - Sign out

Pisk Summary
Stoisreachable

X-Frame-Opionsheader s not st
Target

nonHTTPS ste
X Content-Type-Optionsheador i ot st
K55 Prototon headeris ot sat
Sorver headeris ouns

_static/minus.png

_images/admin-groups.png
Stes Users Groups Plugins Plans Invites

Groups

Search: Sortby: 2| e
Name Created Description Actions

secuity 2014-01-07 15:20 ‘These applications suffer common vulnerabilties and are sed for testing and training purpose. Est | Romow

_static/up-pressed.png

_images/admin-plugins.png
Minion Administration Logged in s april@mozilla.com - Sign out

Stes Users Groups Plugins | Plans Invites

Plugins

Search: Sortby: <]

Name Class Version Weight
ErrorPlugin ‘minion.plugins.test.ErrorPlugin 0.0 heavy
DelayedPlugin 'minion.plugins. test.DelayedPlugin 0.0 heavy
HelloWorldPlugin 'minion.plugins. test.HelloWorldPlugin 0.0 heavy
HSTS 'minion.plugins.basic.HSTSPlugin 0.0 light
ExceptionPlugin 'minion.plugins. test.ExceptionPlugin 0.0 heavy
XXSSProtection 'minion. plugins.basic. XXSSProtectionPlugin 0.0 light
XFrameOptions 'minion.plugins.basic.XFrameOptionsPlugin 0.0 light
XContentTypeOptions 'minion.plugins.basic.XContentTypeOptionsPlugin 0.0 light
ServerDetails minion.plugins.basic.ServerDetailsPlugin 0.0 light
Alive minion.plugins.basic.AlivePlugin 0.0 light
Nmap 'minion. plugins.nmap.NMAPPIlugin 1.0 medium
CcsP 'minion.plugins.basic.CSPPlugin 0.0 light

Robots minion.plugins. basic.RobotsPlugin 00 light

_static/down-pressed.png

_images/admin-sites.png
Stes Users Groups
URL
hitps//zero.webappsecurity.com

hitp//crackme.cenzic.com

hitpy/testasp.vuinweb.com

hitp//testaspnet.vuinweb.com

hitp//testfire.net

Plugins

Plans

Invites.

Search:

Created

2014-01-07 15:20

2014-01-07 15:20

20140107 15:20

2014-01-07 15:20

2014-01-07 15:20

Sort by:

« vasic

« basic

« vasic

« vasic

« vasic

Actions

o

ot

eot

eo

_images/dashboard-groups.png
Web Goat

Mozila |
o A—

- = CIEE
T

_images/dashboard.png
Minion Administration Logged in as yeukhon@acm.org - Sign out

Stes&Scans ScanHistory Al lssues

Sites & Scans

Site Plan. Last Run State High Medium Low

tpcraciane,cenzic.com s - - = = =
tphestasp wineb.com basc - - = = =
itpestaspret winweb.com s - - = = =
[—— basc - - = = =
[—— e - - = = =

minion 0.4 - source code on github.com/mozila/minion

search.html

 Navigation

 		
 index

 		Minion 0.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

persona.html

 Navigation

 		
 index

 		Minion 0.4 documentation »

Sign up for a Persona account

Minion ships with Persona as the default of its two authentication methods. If you do not have a Persona account, follow the steps below:

		Go to Persona Login [https://login.persona.org/]

		Click on Sign in

		Enter an email address.

		If this email address has not been registered as a Persona account, the login dialog will ask you to enter a password. For Gmail and Yahoo Mail users, you will be authenticated against the Gmail or Yahoo Mail servers.

 © Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

_images/admin-groups-editor.png
Stes Users Groups GroupEditor Plugins Plans Invites

Group

Name ‘security

Description | These applications sufer common vuinerabilties and are used for testing
and training purpose.

Created 1369126051

Users g

Email Actions

yeukhon@zcm.org Romow

Sites
site
hitp/zero.webappsecurty.com
hitp//crackme,cenzic.com
hitp//testasp.vulnweb.com
hitp:/Atestaspnet vulnweb.com

http:/testire.net

Actions

theme/README.html

 Navigation

 		
 index

 		Minion 0.4 documentation »

Mozilla sphinx’s theme

This is a version of Mozilla’s sandstone theme, for the Sphinx documentation
engine. [http://sphinx.pocoo.org].

Okay, how do I install it?

You need to install it locally and configure Sphinx to use it. In your conf.py file:

import mozilla_sphinx_theme
import os

html_theme_path = [os.path.dirname(mozilla_sphinx_theme.__file__)]

html_theme = 'mozilla'

Also, take care and remove the pygments_style configuration, as it may not be
of the better taste with the mozilla’s theme.

Enjoy!

 © Copyright 2013-2015, Mozilla.
 Created using Sphinx 1.3.1.

_images/login-oauth.png
Welcome to
Minion

Choose a provider to sign in:

e GOl

_images/admin-plans.png
Plans

long
basic

zp

Created

2014-01-07 15:20

2014-01-07 153

2014-01-07 15:20

Description
Plan that runs long
Run basic tests

Run the ZAP Spider and Scanner

Sort by:

Ear

Ear

Ramore

_images/login.png
Welcome to Minion

Note: This application requires Persona to sign
in.

minion 0.4 - source code on github.com/mozilla/minion

_images/admin-users.png
Sites Users

Users

Email

Yeukhon@acm.org

Groups

Plugins.

active

Plans Invites.

Created

2014-01-07 15:20

Search:
Lastlogin Name

‘Yeuk Hon Wong

minion 0.4 - source cod on gthub.com/mazilaminion

Sortby:
Role

administrator

Groups

securty

Actions

Ean | Remowe

Add..

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

